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Abstract

High-conductivity carbon fibers can be “flocked”, or perpendicularly attached onto surfaces, thus enabling heat
transfer enhancement for such fiber-flocked surfaces. An analysis is performed for fully developed turbulent flow and
heat transfer in ducts with high-conductivity fibers covering the walls. The fiber volumetric packing density is sparse
such that single-cylinder correlations are used for the fiber drag and Nusselt number; this gives rise to body-type terms
in the momentum and energy equations for the region near the wall covered with fibers.

An eddy-diffusivity type turbulence model is employed, including Laufer core-flow distribution and Van Driest
damping, but with a shifted origin. The resulting core- and fiber-region equations are solved by the singular pertur-
bation theory, and matched at the fiber-tip interface, yielding a friction factor function that is fitted to available ex-
perimental data with a 32% fiber-length coordinate shift.

The results show the variation of the duct Nusselt number with Reynolds number to be similar to that for smooth
surfaces, but with an enhancement factor of four for gases. A very strong variation with Prandtl number is predicted for
the fiber-flocked surfaces; for liquid metals and gases a moderate enhancement is predicted, whereas for water and
viscous liquids an order-of-magnitude enhancement appears possible. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The present work is an outgrowth of the previous
analysis that considered fiber-enhanced heat transfer
under /aminar flow conditions [1]; in that work, it was
shown that the placement of high-conductivity fibers in
the wall region reduces the wall thermal resistance, thus
enhancing the heat transfer at the fiber-covered surface.
This effect is expected to be even more pronounced in
turbulent flow because of the steep velocity and tem-
perature gradients near the wall. Therefore, we here
consider the fully developed turbulent flow and heat
transfer in ducts having surfaces sparsely covered with
filaments or fibers, and for filaments which are short
compared to the overall duct diameter or width. High-
conductivity carbon-fiber filaments are typically flocked

“Tel.: +1-858-481-8914; fax: +1-858-793-2446.
E-mail address: klund@electriciti.com (K.O. Lund).

onto the surface, but can be limited to the wall region of
the shear flow.

Other, previous investigations of flow and heat
transfer at fiber-covered surfaces are for the application
to mammals covered with hair [2,3]; in these studies, the
hair filaments were comparatively long with dense
packing, so that porous-media flow was used as a
modeling basis, including uniform flow throughout the
medium [2]. These models for determining the insulating
effects of hair are not applicable to the present sparse-
packing conditions for enhanced heat transfer; instead,
we consider single-filament correlations to apply to the
flow and temperature fields between the filaments.

Owing to the sparse packing, turbulent fluctuations
will penetrate the fiber region to some extent, but the
degree cannot be predicted by any available turbulence
theories. Therefore, the turbulent flow and temperature
fields are here modeled in terms of the elementary eddy-
diffusivity theory, including shifted profiles that are
traditionally used with sand-roughened surfaces [4-6];
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Nomenclature V shifted axial velocity
Ve shifted axial velocity on centerline
A cross-sectional area v nondimensional shifted velocity, V' /Vc
By friction law parameter w turbulent diffusivity coordinate, ¥ — Y,
Co friction law parameter w nondimensional diffusivity coordinate,
Cp fiber drag coefficient W/Ry=z+2
Dy duct hydraulic diameter X axial coordinate
d fiber diameter Y transverse coordinate (distance from wall)
dr scaled fiber diameter, U,d/v Y eddy-diffusivity shift from wall
core outer velocity function y nondimensional coordinate, Y /Ry
core inner velocity function W eddy-diffusivity shift from wall, ¥;/Ry
Darcy friction factor Z shifted transverse coordinate, ¥ — H
volumetric fiber drag force, 26pU?Cp/(nd) z nondimensional shifted coordinate, Z/Ry
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core temperature function

fiber drag function

fiber length (height above wall)
fiber-surface heat transfer coefficient
nondimensional fiber length, H /Ry
scaled fiber length, HU, /v

integral function (4c)

constant, Jy, = Iy (00)

thermal conductivity

Laufer diffusivity function (1d)

Van Driest diffusivity function (1d)
duct hydraulic-diameter Nusselt number
fiber-diameter Nusselt number, hd/k,
duct shape index (=0 for plane, =1 for
circular)

exponent in drag correlation
perimeter, polynomial eddy-diffusivity
function (le)

Prandtl number

turbulent Prandtl number

pressure, ratio of Prandtl numbers, Pr/Pr,
integral function (3c)

heat flux

radial distance from centerline

radial distance to fiber tips

friction Reynolds number, RyU, /v
duct Reynolds number, U,,Dy/v

fiber Reynolds number, Ud/v

ratio, (1+7)/(1 4 0.4y)

ratio, kso/ky(1 — o)

heat source parameter

friction parameter, U, /KkVc
temperature

axial velocity

axial velocity at Y = H

duct mean velocity

shear velocity at Y = H,+/(tu/p)
nondimensional axial velocity, U/U,
nondimensional axial velocity, Uy /U,
nondimensional duct-average axial velocity,
Un/U:

Greek symbols
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thermal molecular diffusivity

fiber slenderness ratio, d/H

flow perturbation parameter

heat transfer perturbation parameter
ratio of mean to centerline velocity
thermal diffusivity ratio, 1 + pvt/ v
drag parameter, y = 0.4(d+u§)3 4
fiber-region inner coordinate, (h —y)/e
fiber-region inner coordinate, (A — y)/en
scaled temperature, (T — T,)/(Tu — Ty)

von Karman constant, 0.41

parameter in (7d) and (8)

turbulence shift distance, 7 — y,

viscosity

molecular momentum diffusivity

turbulent momentum diffusivity

scaled temperature, 6/S

fluid density

solid (fiber-region) volumetric packing frac-
tion

total shear stress

friction Reynolds parameter, kRyU. /v = kR"
core inner, stretched coordinate, £(z 4 1)
heat transfer constant, /(1 + r;/I")

flow constant, 1/w? = 1/& + M(A)N(EA)

Subscripts and superscripts

C,c
CL

fs~vog S TR A

core region

centerline

fiber diameter

fluid (gas)

valuation at ¥ = H, heat transfer
valuation at y = h

inner asymptotic region

core bulk average, integral index
outer asymptotic region

solid (fiber)

turbulent

wall

wall-region variable




K. O. Lund | International Journal of Heat and Mass Transfer 44 (2001) 3799-3810 3801

Velocity
Diffusivity
— Uy }47 Ve "
I
A S WA R‘

Fig. 1. Problem definition diagram.

recent studies with other types of roughness confirm the
validity of shifted profiles [7-9].

As in previous asymptotic analyses of turbulent flows
[10,11], the shear stress and the velocity gradient are
related by the sum of the molecular and turbulent dif-
fusivities: © = p(v + v,)dU/dY; however, the turbulent
diffusivity is here taken to dampen out at virtual origin
Y = Y, (instead of ¥ = 0 for smooth walls), where Y, is
determined from experiment. Therefore, in similarity to
previous work [10,11], we take v, =v x M(w)N(w"),
where the diffusivity coordinateisw =y — yy =z + 4, as
shown in Fig. 1, w* = WU, /v, and where M and N are
the functions to be defined.

The previous analysis for laminar flow [1] showed
that the fiber drag was much greater than the wall shear
at Y = 0, and that the largest shear tended to occur near
the fiber tips at ¥ = H. We therefore take the turbulence
to scale with this maximum shear (instead of the wall
shear) and define the friction velocity as U, = /(tu/p),
where 1y is the shear stress at ¥ = H.

Energy transport in the fiber region consists of con-
duction in the fibers and convection between the fibers.
The turbulent diffusivity of heat is taken proportional to
v; through a constant turbulent Prandtl number [6].

With these models, the momentum and energy
equations are stated for the turbulent core and the fiber
regions, and the respective solutions are matched at the
interface, as previously [1]. For a constant wall heat flux,
the results show a significant increase in the Nusselt
number compared to other surface augmentation tech-
niques.

2. Flow analysis
2.1. Derivation of momentum equations

For the turbulent flow analysis, the velocity is divided
into the core region and the fiber region, as shown in
Fig. 1. Here the core velocity, U(R), is defined in terms
of the shifted coordinate system,

U= U+ V(2),

where Z = Y — H, and Uy is the interface velocity at the
tips of the fibers, as indicated; thus, V(0) =0 at
Y=H (R=Ry), and V ="V at Z=Ry (R=0). Here
R is the radial distance from the center of a circular duct,
or the distance from the centerline for a planar duct.

2.1.1. Core-region momentum equation

A force balance on a differential element in the core
of a round pipe yields the equation for the total (lami-
nar + turbulent)shear stress, t:
1 9(R"™7) op

T & const. (1a)

For the turbulent core where there are no fibers, (1a) has
the first integral © = ty(R/Ry); thus, in terms of
Z = Ry — R, the core stress is

t=14(l — Z/Ry) = (1l —2) = pU(1 — z).
Let © be related to the velocity gradient by the total
viscosity:

dv

‘c:p(v—ﬁ—vt)d—z.

Then the core momentum equation for both circular and
planar ducts is

%H%)%%ﬁ (1+%)$=U3(lfz)~ (1b)

Except for boundary conditions at the tips of the fibers
(z=0), (1b) is identical to conventional turbulent duct
flow, but with v, “disappearing” below 0 at z = —4, as
typical for rough-surface flows [4-6], and as indicated in
Fig. 1; therefore, (1b) can be written as the singular
perturbation problem [10,11]:

dv

T =s(1-2), (1c)

1
(4 M+ Anle+ 21
where the Laufer (M)and Van Driest (V) eddy-diffusivity
functions are [10,11]:

y ” -1/6912
My)=———, N{=|l-¢ Y . 1d
) =1y NO=I ] (1d)
Based on the data of Laufer for circular ducts [12],
and on the data of Hussain and Reynolds for plane
ducts [13], the function P(y) is represented as the
polynomials

. 0.62(1 +11.8y —4.6y?), circular
PO) ~ { 0.44(1 + 13.8y — 2.9?), planar (le)

with the resulting eddy diffusivities shown in Fig. 2.
Because ¢ is large, N decays to zero a short distance
above the fibers; however, N is essential immediately
near and between the fiber tips.



3802 K. O. Lund | International Journal of Heat and Mass Transfer 44 (2001) 3799-3810

0.10
- - -0OLno_
S 008 P TOgg
@ -
! 0.06
S < Laufer [12]
& O Hussain & Reynolds [13]
= 0.04
E

0.02

0.00 b

0.0 0.2 0.4 0.6 0.8 1.0

¥

Fig. 2. Eddy diffusivity.

2.1.2. Fiber-region momentum equation

Consider a surface flocked with fibers of length H
and diameter d. Because the fibers are short relative to
the duct radius, the curvature effect in this region near
the wall is negligible. Thus, a force balance on a differ-
ential element at distance Y yields the following [1]:

ot _ p\ _ pU?
(I*U)W*fo—*<*&):*RH. (2a)

Therefore, with 7= p(v + »)0U/0Y, the fiber-region
momentum equation is

d Ul 2 ,. U
(1 —G)a—Y|:(V+V1)a_Y:| _n_dU CD——E. (2b)

Let u* =U/U, and y=7Y/Ry. Then the nondimen-
sional equation results

1—-06 0 out 20R*

o ou | 20
R o {(l—kvt/v) ay} Tl Cp L. (2¢)

A correlation of drag coefficients for single circular
cylinders in cross-flow was developed previously, which
is valid over a large Reynolds number range [1]:

L1010 () Ry
Re,  Re! 10
10 1 d™

- — 2
d+n (M-Hz + 10 )’ ( d)

where Re;, = utd* and n = 3/4. Substitution of (2d) into
(2c) then yields the fiber-region momentum equation

l-0 0 Oout 200R* N

R 3y {(1 + Vt/")a} —H(T)mg(” )=-1, (2¢)
where g(ut) = (u)”* +0.1(d*)**(u*)*. For the ana-
lytical solution of (2e) it is convenient to expand the fiber
drag term in a Taylor Series about u;:

gu”) ~ gluy) + (u” —uy)g' (uy)

5, 14 uy 147y
_2 1+ 0.49)(ut ="
gl (A0 =5 G )

CL)Zl

where y = 0.4(d )*/*; then, (2¢) is written as

df/1 dut
2 — | =+ My — w]N[é(y — — | —u
sdy[(5+ by~ MINEG yo]) dy} u
u+
:—%rh+~~~, (2f)
where
) 1+9  1+4040d* )"
h -

S 14+04y 14 0.06(d b)Yt

and the leading multiplier is considered a small number

(1 —a)(d*)"*
256R* () /(1 4 0.47)

&=

d+ n(l — o)
=— 7 <=1
S\ aRt(dr ) (14 0.4y)

(2g)

That is, we limit the investigation to very small slen-
derness ratios, d* = 0h* (e.g., 0 < 0.01), and large R* so
that ¢ < 1. With small ¢, (2f) constitutes a double sin-
gular perturbation problem which can be solved for
¢ — 0 and ¢ — oo as previously for smooth wall-boun-
ded shear flows [10,11]. However, for small ¢, we shall
find that both laminar and turbulent layers can be in-
cluded together in the fiber region such that the limit,
¢ — o0, is not needed to match these layers.

2.2. Solution of momentum equations

The core- and fiber-region equations (1c¢) and (2f), are
both singular perturbation equations for ¢ — oo (large
Reynolds number); that is, we seek solutions for negli-
gible molecular viscosity relative to turbulent viscosity.
This will be true in most of the core region (core outer
region), but close to the fibers both terms are of equal
importance (core inner region); therefore, for the latter,
an inner stretched coordinate is defined, { = &(z + 4).
For the fibers, the outer fiber region is near the center of
the fiber lengths, and the inner fiber region is near the tips
of the fibers; thus, the inner stretched coordinate here is
n = (h—y)/e. The inner and outer solutions are joined
by matched asymptotic expansions, and these matched
solutions furthermore have matched values and slopes at
the fiber tips (y = h).

2.2.1. Core-region solution

For the outer core region let v=1+sF(w;&) =
1 +s{Fy(w) 4+ Fi(w)/&+ ---}. Then to lowest order, (1c)
is:

(M[w})%: 1+ 1—w,
(3a)
%= (%er(w))(l +A—w).
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The solution of (3a), subject to F(1 + ;&) =0, is

Fo(w)=(1+2)In (%) +(1L+A—w)l - 0w,
(3b)

where O, (w) is the integral

L / 1+)‘(1+z—t)"’1>(z)dz. (3¢)

R

Thus, the core-outer-region velocity is
V() =1 +5(1 H){ In (%)

For the core-region inner solution (near the fiber
tips), we take { = &(z+ 4) = ¢éw, and v(z; &) = s[f () —
f(E2)]; then v(0; &) = 0 and, to lowest order as & — oo,
(Ic) is

d
(1 +CN[C})Q: 14/ (4a)
d¢
The solution of (4a) is similar to previous, smooth-wall
results [10]:

So(Q) = (1 +In(1 4+ 8) + (0], (4b)
where I, is the integral
W= [ 2L LN, (40)

o L4pmt 14 pnN(r)
thus, to lowest order, the core inner solution is

i , 1+

V() =s(1+4) {ln (Té) + 1h(0) —Io(é).)]. (4d)
To match the core inner and outer solutions, the

same function must be obtained in the limits of V' as

{— o0,

¢

v — (1 +;,)|:11’1(Z+/u) +1In (m

) +Jo — 10(57»)} :
(4e)

and of v° as z — 0,

W 14 s(1 +x){1n(z+;.)+ I~ In(1+ ) 7?‘3 }

(4f)
It is seen that these limits are the same function when

s(142) [m (ﬁ) +Jo —IO(U)}

=1+s(1 +i){1 —ln(l*')“)_?yi)}’

or
L —neB,
s(1+ 1) (52)
By = Jy + ?fﬁ C 1= [B(ED) + In(1 + EA)],
since 4 is of order 7 < 1, this result simplifies to
1
K[Zczgzlncf—f—Bm (5b)

BO = Co — [[o(fj.) + ln(l + 6)&)],

where Cy =Jy + 01(0) — 1 ~ 3.26. It is noted that for
A =0,By = Cp; although 2 is small, the product &4 is
not. Now, the overall core-flow distribution is only
marginally affected by the short fibers; therefore, the
ratio of shifted mean velocity to centerline velocity can
be taken as the same for smooth ducts, V,/Ve = ¢
(=~0.82 for circular ducts [6] and ~0.89 for plane ducts
[13]); hence we obtain the mean velocity U, = Uy + ¢ Ve
and the expression for u :

ot
l:Ku“‘ uh:lné—o—Bo,
s
or (5¢)
ul :u;+%(lnf+30(f/l)).

With the above relationships for s, a uniformly valid
core composite expansion is

() = [In(1+0) + 1o(0) ~ o(€2)
FO =20 -0+ ) (54)

with the absolute core velocity given by u™ = + v*.
This expression compares to the composite expansion
for smooth walls:

()" = In(1+ &) + (&) + (1 [ - )]}
(59

2.2.2. Fiber-region solution

The fiber-region outer solution of (2f) as ¢ — 0 (for
the fiber mid-section) is, simply, the constant velocity,
u™ = uir /5. An inner solution exists at the top of the
fibers with n = (h — y)/¢; however, the one at the bot-
tom is neglected for this turbulent flow. The resulting
inner equation is therefore

—ut = (6a)
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thus, to lowest order, as ¢ — 0

1 2yt
(E+ M[A"}N[g’ﬂ) dd% —ut = Ut 4 (6b)

Because the limit ¢ — 0 causes the turbulent diffusivity
to become constant in 7, both the laminar and turbulent
parts are here treated together and the limit & — oo is
not required. Thus, the solution of (6b) to lowest order
in ¢ is

u+
= (5 — e},

5
1 (6¢)
& = E +M[/1]N[QV)V]

The core distribution, (5d), and this solution are
shown in Fig. 3 for the circular duct, and for A = 0.32%
(for subsequent fitting to experiments), where the log—
log scale emphasizes the fiber-region. The usual full
turbulent velocity profile, but shifted and joined to the
fiber-region flow at # = 0.02 (dashed line) is also shown.
Both the values and slopes of the velocity profiles agree
at the interface (as further discussed below) where the
shear “pulls along” the fiber-region flow.

In conventional wall variables this curve is shown in
Fig. 4, in comparison to the smooth profile (5¢). It is
seen that the velocity profile is shifted downwards as the
fibers are approached, in comparison to the smooth-wall
profile, whereas there is only a marginal effect in the
core, as expected. This is an important behavior because
it is the turbulent flow in the vicinity of the fiber tips that
will effect heat transfer from the fibers, as shown pre-
viously [1]. For the case calculated in Fig. 4 the core
velocity profile approaches the fiber-region at At = 3.4,
as seen; there is a significant “retardation” of the flow
due to the fibers below A*.

Now, from (6¢c), the gradient of the fiber-region
velocity is
du”  ufo ut o

5—§(57}’h)eiwﬂ*’§(57}"h) asf’]ﬂo. (73.)

0.1

0.01 —

0.01 0.1 1
U/,

Fig. 3. Typical velocity profile.
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Fig. 4. Smooth- and fiber-surface velocity profiles.

That is, at the tip of the fibers the gradient or slope
of the velocity profile becomes infinitely steep as ¢ — 0,
in order to meet u* =u at y=h (n=0). Also, the
gradient of the core-region velocity profile is obtained
from (4a) as

dut
dy

o do
T ¢U. dz

1 &s
i Tt

y=h

(7b)

and it is necessary that shear forces equate at the fiber-
tip interface; therefore, comparing (7a) and (7b) we have
ut o

Lo
(1 —0')—(5—”11)*5(14,“

&

&s
— + —_—
) 1 TEN(EL (7e)

or, to match shear forces, the interface velocity is ob-
tained from

+_ S¢ Es . N
= do(1 —a)(5—ry) 1+ EAN(ER) (“m - uh)
zA(u:;fu;:). (7d)

This interface velocity depends nonlinearly on the Rey-
nolds number and the fiber length, as shown in Fig. 5 for
a circular duct. Now, substitution of (7d) into (5c)
results in the friction law for fiber-flocked surfaces:

s ¢
\/;:um(l+A)KS

-1 {¢><1n¢+30>
S5¢&
T o= o)(5 = )1 + TN(E) } ®

Since & = kRuU./v = (1/2)kRe/u}, = (1/2)kRe/f/8,
(8) is implicit for determining u/ and f as functions of
Re, similarly as the Prandtl friction law for smooth
surfaces [4].
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Fig. 5. Fiber-tip velocity variations.

The only unspecified parameter in (8) is the turbu-
lence shift distance, 4 = h — );, which must be deter-
mined by comparison with the experiment. For this
purpose, flow-Ap tests were conducted with water-flow
in two different tubes, flocked similarly with carbon fi-
bers, for which /4 =0.0435 6=0.022, o=0.08
(¢ = 0.023) [14]; the resulting friction factor data are
shown in Fig. 6. By the adjustment 1/4 = 0.32, there is
fair agreement of (8) with these pressure-drop data at
the higher Reynolds numbers, as seen, although there is
considerable scatter in the low Reynolds number data.

The “relative roughness’ of the experimental fibers is
h/2 = 0.022; if this is used as a “‘sand-grain roughness”,
then the Moody curve shown is obtained [15]. It is seen
that the flocked surface has slightly higher friction than
sand grains, indicating a somewhat deeper penetration
of the turbulence into the fiber region, which is con-
sistent with the 32% turbulence penetration. This pen-
etration means that enhanced heat transfer is expected
since most heat transfer occurs near the fiber tips.

The friction results for a larger Reynolds number
range is shown in Fig. 7 in comparison to the Prandtl
smooth friction law. At the smallest turbulent Reynolds

0.08

0.07 [~ ol em

0.06 -
Flocked Tube, &/h = 0.32

0.05

- Moody, = 0.0225
0.04 [~ 1 1 1 1

0,03

0.02 1 i Smooth i

| | | |
0.01
}OOUO 15000 20000 25000 30000 35000 4000

Re

Fig. 6. Comparison of friction factor with data.

0.06

0.05

0.04

f -,
0.03

0.02 -~ - Smooth

0.01

Re

Fig. 7. Calculated friction factors.

number (Re = 5000), the smooth- and fiber-wall friction
factors are about the same, but as Re increases, ffier
increases before it decreases again, whereas finoom de-
creases uniformly. The undulating fs,., behavior is typ-
ical of transitional roughness, and is the result of varying
the roughness Reynolds number, 4" = AU, /v. Thus, as
Re increases, the surface becomes progressively and dy-
namically more rough (i.e., the turbulence progresses
farther into the fibers towards the limit, y,).

3. Energy analysis
3.1. Derivation of energy equations
3.1.1. Central core region equations
In the fiber-free central core region of the duct, which

ranges over 0K R< Ry (Ry =Z > 0), the fully devel-
oped energy equation is

1 0 (., 0L\ UL

ﬁ&( Fﬁ)*a—g&’ )
or, with R=Ryr=Ry(l-—2z), 0.=Tc—Tw)/
(T — Tw)

0 (,To0,\ S, . S, vw
6r(r§6r)_ fV"u = érﬂ(uh+1€s ,  (9b)

where the wall heat source parameter, S, is given by

OL/X o, dLn/dX  Nuly

S=R"Pr = ,
(Tw — Tu)/Ru (Tw — Tu)/Ru  uf;

where u™ = u + v/ks, ks = U,/ V., and where the core
velocity, v(w), is given by (5d): v(w)/s = In(1 + &w) +
Io(éw) — Ih(EA) + (1 + 2 — w)[l — Oy (w)]. Here, the sec-
ond equality for S results from the constant wall-flux
heat-transfer case (¢, = const.); for this case, S is a pa-
rameter to be determined from the solution (similar to
the friction factor). When S is known, the overall Nus-
selt number is determined from Nu = u;;,S/0y,.
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3.1.2. Fiber-region equations

We consider a surface flocked with fibers of height
H and diameter d, as shown in Fig. 1. Above the fibers
there is a flow which results in the axial velocity Uy
and temperature Ty at ¥ = H. For a differential slice at
distance Y, energy balances on the fiber (solid) and
fluid (gas) control volumes yield the following equa-
tions [1]:

T, kP,

Y2 kA, (I, - T,) =0, (10a)
0 07, hP, U 0T,
—r=2)-—(1,-T,) =— =& 10
aY( 6Y) kgAg( e= L) o, 0X° (10)

where £ is the heat transfer coefficient between the fluid
and fibers at distance Y from the wall. The laminar plus
turbulent thermal diffusivity function is, in general
Prv
I'=1+4——=1+piM[z+ AN[E(z+ 1)), (10c)
Priv
where p = Pr/Pr, =~ Pr/0.86; however, in the fiber region
as z — 0, the velocity analysis shows that I" becomes a
constant, as follows:

Prov, .
F=l+p- V; — 1+ pEM(A)N (&)
= 1 + p&iN(E). (10d)

Equations (10a) and (10b) are recognized as the thermal
fin equation [16], and the one-dimensional convection
equation [6]. Let nondimensional temperatures be de-
fined by

T —Tw(X)
C Tu(X) — Tw(X)’

so that 0,(X,0) = 6,(X,0) =0 and 0,(X,H) = 1. Then
(10a) and (10b) appear as

020, 1
a—yz—g(es—eg):o, (11a)

0 00 1473

— (=2 ) —=(0,— 0) = —Su™, 11b
where the fiber heat transfer, ¢y, and conductivity ratio,
ry, parameters are

_ d

8 =
N 2Ry /Nugky K,

The complete solution of (1la)-(l1l¢c) requires
the local fiber-diameter Nusselt number, Nu, = hd /k,,
usually as a function of the local Reynolds number,
Re, = pUd/pu = u"d" = ud"; that is, we shall find Nu,
to be important only near the fiber tips, so that u™ ~ u;
is an adequate approximation. Numerous correlations
have been reported, depending on the Reynolds number

ki o
kel —a’

Ty =

range in question [1]; here we employ the Churchill and
Bernstein correlation for Re, > 0.2/Pr [16,17]:
(1 + (Rey/282000)%)*>

Nug = 0.3 + 0.62Re)/*Pr'/? (1 + (04/p)7) 7

(I1lc)

Since I' is constant in the fiber region, let
Q*=(I'+r)/I', and = 0/S, then the fiber-region
energy equations (11a) and (11b) become

Oy r

2 s 02 _ —

ey ayz I + 7 (ws 'wbg) 07 (123)
Y 7

2 g _ 02 k _ — 2+

ey ayz Q F+Vk (lpg l//s) eqlt /F (12b)

3.2. Solution of energy equations

3.2.1. Fiber-region solutions

The fiber-region thermal solutions are obtained first.
Regardless of the value of Nuy, (11a) and (11b) can be
combined to yield
az

a—yz(l"f)g +r6s) = —Su*

.
= fs%h {m—(5—r)e ) (13a)
with u™ from (6¢). Thus, the fluxes are related by

0
@(F()g—i-rk()s) :—S/u+ dy + C

with (13b)
u+
/u+ dy = ?h {ry — (5 —m)(e/w)e "=/},
At the wall, ¢ = (1 — 0)g., + 09, such that with the
Fourier conduction this leads to the requirement
00,

(1—0)5

o
y=0 kg Oy

where u/ is the mean value of u* over the core; thus, in
(13b), C; = u}S/2(1 — g). A further integration of (13b)
yields the relationship between the fiber-region temper-
atures:

n

1
r9g+rk95:§[”7my

7“§”h 2 2
e 5 Y+ 0@E)|S+ C.
(13¢)

Here C, = 0 because both nondimensional temperatures
are zero at y = 0.

For the tip condition of the fibers, H is taken such
that the usual fin extension is included and such that
[dOs/dy],_, =0 [16]; therefore, (13b) yields the ex-
pression for Nu and S:
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Nugm = S _ F[aeg/ay]y:h

U, Tu (13d)

ut /2wt
yHElnl/ —?h[rhh—e(S—rh)/w]—F

Now, substitution of (13¢) into (12a) yields a single
equation for integration:

@ ut y—uﬁrhyz
2(F+r) | 1—0 5 ’

(14a)

G2
sf{ e Qzlp =

where i/, = 0,/S. Because ¢y < 1, (14a) is also a singular
perturbation equation. Thus, the outer solution is

o 1 ut uim
Rt =t (140)

Since this goes to 0 for y =0, there is no thermal
boundary layer at the wall. For the fiber-tip region we
take ny = (h — y)/en; then the inner solution of (14a) is
of the form exp(—Qny), and the outer plus inner solu-
tions are

1 ul utr —O(h /e
ws:Z(F-i-i’k){l_O'yi lshyZerse o WH}

(14c)

setting the slope of (14c) to zero at y =h, we have
by = —(en/Q)[uf /(1 — o) — 2hu; ry/5). Therefore, the
solution of (14c) gives the solid temperature as

v, = 1 Uy UpTh o
T2+ 1-6" 5
- %“ ( ; ”i - %hu;rh) e~ k=)o } (14d)
and with (13c) the fluid temperature is
1 u i
l//g_Z(F—Q—rk){ -0’ 5
+
+ gg—rrk ( lu_ma - %hu;rh> e 2h)/om } (14e)

These temperatures are shown in Fig. 8§ for several val-
ues of k,/k, and S, with 6, as solid lines and the corre-
sponding 6; as dashed lines. All solid lines proceed to
0,= 1 as y — h, and the slopes of 0 go to zero, as re-
quired. The difference between (14e) and (14d) yields the
lateral temperature potential that drives the heat trans-
fer between the fluid and fibers:

: Foo2
0, — 0 = S ( “m _ —hu;rh)e—ﬂ“’—ww (15)

2Q'\1 -0 5

Thus, the lateral potential is exponentially small except
near the fiber tips as y — h; however, as the fiber con-
ductivity is increased, the nonzero potential reaches
further into the fiber region. These solutions are similar

1.0
§=0.02 — 0,
0.8 a=0.01 e B ]
e < 0.2 - -
06 - Nug =1 5 _._“--‘
: Re = 50,000 "
0 ¢ onmm Y-é?f-—i\/‘\”\ e
of
0.4 0
oo
0oz s ==t
--------- 00001 , 41
0.0 35} --::--J --------------------------- e e
0.0 0.2 0.4 0.6 0.8 1.0
v/h

Fig. 8. Fiber-region temperature profiles.

to those for laminar flow [1], except that the factor S is
here much larger.
Now, since ,(h) = 1/S, we have from (14e)

2 tr) (H%),@(ﬁ 28‘{—r"h>

S l-¢ Qr 5 Qr
14+ EUri
~ree (g ) (16)

In all of these solutions, I is the constant value for the
fiber region given by (10d).

3.2.2. Central core region solutions

For the core thermal solution, let 6, = ¢ —
(S/&)Gy(w). Then (9b) results in
0 ( ,I0G,
~ 20
or ¢ or

) "*+ {ln( + Ew) + Lh(Ew)

—1(E2) +r[l = (W]} (17)

The first integral of (17) is therefore
r 6GO 1 6(;0
Eo = (1 MO )
utr 7’
= +
n+1 (n+2)x

1
-‘1—7{](3—‘-](2—](3}7 (18&)

where, for ¢ > 1 and 1 < 1,

K= / P [l 4+ &(1 - r)] dr
0

= {49 -
—r(1 +r/2)"},

K = /O P (C) — Io(E2)] dr

| » rodl d¢
_ ntlAL n+1
n+l{r 0 /Ur dCdrdr}

= 10+ Q) — h(ED]} + 0(1/2),

(1= In(1 + &)
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K3 = / }"n+1Q1(W) dr
JO

L (g - [t )

:n+1

rn+2

= m{Ql(W) = Ona(w)}.

For the second integral of (17), let Gp=
[u /(n + 1)]Gon + [1/(n + 1)k]Go,.. Then, with zero slope
at the centerline, the core-temperature first integrals
are

E-i—pM(w)N(g’w)) 5 = (18b)

P

roGeh (1 0Goh
& or

I'oGyk [In(1+¢&) — (1 =Y In(1 +Ew) +Jo — ()]

& or "
- (1 +V/2)n}"n_1 +}’{10((r) —[O(ék)}
1
—”Z{Ql—Q3—Z:tZ}. (18¢c)

For (18b) the outer and inner equations are

w oGy, o
pl-i—wP(w) ow (1=w), (19a)

oGy,
oc

(1+pLN(D) —(1-¢/8) ~—1. (19b)

The solution of (19a), subject to G, (1) = 0, is

Gh = (=T + (1= w)(@10) — 1), (202)
where Q) is given by (3c), and the solution of (19b) is
Ghy = Giy(0) = > In(1 + p0) = (). (20b)

where [, is given by (4¢). Then matching (20a) and (20b)
we have the initial value

Gy (0) = }J {In(p&) + 0:1(0) = 1} + (20c)

with J; = I1(00); thus, the composite expansion is

L e R

p

For (18¢) it is more convenient to use numerical
integration. An example of both functions is shown in
Fig. 9 for the circular duct (n = 1). Near the fiber tips
(r = 1), these variables increase rapidly to their inter-
face values, Go,(1) and Go(1). With the Gy-function
thus determined, we then have the core temperature
distribution

50
40 — n-=1
& =001
§ =0.02
30 — h =002
Pr=07
Re = 6,000 Gox
20 b Kk = 0.02/1,000
10 —
0
0.0
Fig. 9. Core-region temperature functions.
S
Oc(r) = OcL _EGO
NYARTN 1
=0cL —~ | —2=Gu(r) + Go(r 2la
o 5(n+1 () + G O ) (21a)

and, since 0.(1) = 1, the centerline temperature is

1
(n+ D

S +
O =1+- (nuihGOh(l) +

5 Goh(l)). (21b)

3.3. Nusselt number results

To determine the Nusselt number, the mean bulk
temperature is needed. This is obtained by a further
numerical averaging integration of (21a) and (21b), thus
forming the tip minus core-mean values, AGy, =
Go},(l) — Go;,"m and AGOK = GOK(I) — GOx,m- Then, the
average core temperature is given by

O =143 (2 AGy +— L AG (22)
m — f n 0h (n+1)7€ Ok |-

Because the fibers are short, and 6 is small near the wall,
(22) suffices for the overall bulk average.

In view of these considerations, the final expression
for Nu = u}S/0, is given by (23):

S 1
4 + —
Nu = umS/{l e (uhAGOh + KAGUK) } (23)

The results of computations with (23) are shown in
Fig. 10, in comparison to the smooth-wall Gnielinski/
Petukhov correlation [16]. For the curve labeled “A” the
increase in Nu with Re follows the standard, smooth-
surface behavior, but at higher Re values the fiber-sur-
face results in greater Nu values by a factor of two.
Although this degree of enhancement is somewhat larger
than for some other types of surface augmentation
[18,19], it is fairly typical in turbulent duct flow.
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The fiber-surface heat transfer tends to increase with
the solid packing fraction, o, and fiber length ratio, 4, as
well as with a smaller slenderness ratio, o; therefore,
these parameters were changed to the values shown in
Fig. 10 as curve “B”. Now it is seen that, for high-
conductivity fibers, a factor of four enhancement is
possible. Such a degree of improvement is difficult to
achieve with other types of surface augmentations. The
above results are for gases with Pr =~ (.7.

At conventional smooth and partially-rough walls,
the Prandtl number primarily affects conduction across
the viscous sublayer. By contrast, for fiber-flocked walls,
Pr affects the turbulent diffusion of heat between the
fibers, and thus the heat transfer all along the exposed
fiber surfaces; since the fibers have a very large aspect
ratio, a considerable amplification of the Pr effect may
be expected.

The effect of the Prandtl number is shown in Fig. 11
where the computed curve is compared to smooth-wall
correlations for liquid metals, and for gases and viscous
liquids [6]; a representative fluid conductivity, k,, varies
linearly from 100 W/m K at Pr = 0.01 to 0.1 W/m K at
Pr =100, for illustration, and the solid conductivity is
fixed at &, = 1000 W/m K. Although the Nu, correlation
is extended below its experimental range, it is seen that
there is uniform enhancement for small and moderate
Prandtl numbers, and that for large Pr a very large en-
hancement is predicted with approximate first-power
variation Nu ~ Pr.

The strong Pr variation can be seen in the limits of
the analytical solutions: for ¢ — oo, Nu — uS in (23);
thus from (16), and with Q* = (I + r,)/T,

21 —o)(I' + 1)
h+ [(enri) /(Q1)]
20— o)V (I 4 1)

B SH}"k+h\/F(F+I"k) .

9~
Nu — u S~

4 §
10 : 5
A
10 & 5
Nu
10*
Pr=07 |
- ky'ks =0.00002 |
Ll il L il

10! )
10" 10° 10°

Fig. 10. Variation of Nusselt number with Reynolds number.
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Fig. 11. Variation of Nusselt number with Prandtl number.

Since from (10d) I' ~ Pr, it is seen that there is a strong
effect of Pr on Nu for fiber-flocked surfaces. There is also
some Pr effect through ey and Nu; from (11a)—(1lc).
Hence, the results of the analysis show that fiber-flocked
heat transfer surfaces may yield an order of magnitude
enhancement for water and viscous liquids.

4. Conclusion

Using accepted turbulence modeling techniques and
perturbation analysis, in conjunction with experimental
fine-cylinder drag coefficients and Nusselt numbers,
velocity and temperature profiles were determined for
turbulent flow and heat transfer about the fibers at the
duct surface as well as in the duct core. These profiles
show large gradients near the tips of the fibers, which
lead to large heat transfer enhancements. The results
show that, for gases, a factor of four enhancement is
possible with the fiber-flocked surfaces. Moreover, even
greater order-of-magnitude enhancements are predicted
for water and viscous liquids.
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